A Generalized and Efficient Preparation of a Novel Class of Macrocyclic Bis(guanidines) from Cyclic Bis(carbodiimides)

Pedro Molina,* Mateo Alajarín,* and Pilar Sánchez-Andrada

Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, E-30071 Murcia, Spain

Juliana Sanz-Aparicio and Martín Martínez-Ripoll*

Departamento de Cristalografia, Instituto de Química-Fisica 'Rocasolano', CSIC, Serrano, 119, E-28006 Madrid, Spain

Received November 17, 1997

Reaction of readily available macrocyclic bis(carbodiimides) with nitrogen reagents such as ammonia, primary or secondary alkylamines, and α, ω -diamino compounds provided a novel class of macrocyclic bis(guanidines), which were isolated as crystalline solids in high yields (74–98%). The crystal and molecular structure of the bis(guanidine) derived from bicyclo[8.8.2]docosane **10a** has been determined.

Design and synthesis of macropolycyclic receptor molecules for efficient and selective recognition of inorganic oxoanions and negatively charged functional groups (carboxylate, phosphate, etc) on organic and biological substrates is the most basic requirement of supramolecular and biological chemistry. A particular favorable interaction mode showed by abundant biological examples¹ is the complexation of oxoanionic functions by guanidinium groups,² which has been exploited by acyclic³ and cyclic⁴ artificial receptors. Incorporation of a guanidinium group into a bicyclic framework paves the way toward polytopic hosts capable of positively dedicated enantioselective recognition.⁵ In this context, enzyme mimics formed by the incorporation of two guanidiniumlike groups, in the guise of 2-aminoimidazole rings, enhance the rate of phosphodiester P-O bond cleavage under a variety of conditions.⁶

Among the methods described for the preparation of guanidines, only two methods have been successfully applied for the synthesis of macrocyclic guanidines. The first one is based in the S-alkylation of macrocyclic thioureas followed by treatment of the resulting S-thiouronium salts with ammonia^{6f,7} to give macrocycles type 1-4.

(4) (a) Kurzmeier, H.; Schmidtchen, F. P. J. Org. Chem. **1990**, 55, 3749. (b) Chicharro, J. L.; Prados, P.; de Mendoza, J. J. Chem. Soc., Chem. Commun. **1994**, 1193. (c) Boyle, P. H.; Davis, A. P.; Dempsey, K. J.; Hosken, G. D. J. Chem. Soc., Chem. Commun. **1994**, 1875. (d) Metzger, A.; Peschke, W.; Schmidtchen, F. P. Synthesis **1995**, 566. (e) Peschke, W.; Schiesse, P.; Schmidtchen, F. P.; Bissinger, P.; Schier, A. J. Org. Chem. **1995**, 60, 1039.

(5) (a) Echavarren, A.; Galan, A.; Lehn, J.-M.; de Mendoza, J. J. Am. Chem. Soc. **1989**, 111, 4994. (b) Gleich, A.; Schmidtchen, F. P.; Miknlcik, P.; Müller, G. J. Chem. Soc., Chem. Commun. **1990**, 55. (c) Schmidtchen, F. P.; Oswald, H.; Schummer, A.; Andreu, D.; Echavarren, A.; Prados, P.; de Mendoza, J. J. Am. Chen. Soc. **1992**, 114, 1511.

Schmidtchen, F. F., Oswald, H., Schumner, A., Andreu, D., Echavarren, A.; Prados, P.; de Mendoza, J. J. Am. Chen. Soc. 1992, 114, 1511.
(6) (a) Göbel, M. W.; Bats, J. W.; Durner, G. Angew. Chem., Int. Ed. Engl. 1992, 31, 207. (b) Jubian, V.; Dixon, R. P.; Hamilton, A. D. J. Am. Chem. Soc. 1992, 114, 1120. (c) Kneeland, D. M.; Ariga, K.; Lynch, V. M.; Huang, C.-Y.; Anslyn, E. V. J. Am. Chem. Soc. 1993, 115, 10042.
(d) Smith, J.; Ariga, K. J. Am. Chem. Soc. 1993, 115, 362. (e) Perrault, V. M.; Chem, X.; Anslyn, E. V. Tetrahedron, 1995, 51, 353. (f) Gross, R.; Dürner, G.; Göbel, M. W. Liebigs Ann. Chem. 1994, 49. The second method which allowed the formation of **5** is based on the conversion of a macrocyclic bis(thiourea) into the corresponding bis(carbodiimide) and further treatment with amines⁸ (see structures).

In this context, we report herein an efficient and simple method for the tailor-made preparation of new host molecules of different shapes, sizes, and topology bearing two guanidine moieties. The method, based on the reaction of macrocyclic bis(carbodiimides) with amines, allows the tuning of the size and shape of the central hole as well as the complexity by suitable variation of the nature either of the spacers linked to the aromatic ring in the starting C, C-bis(iminophosphorane) or of the amino compound used as reagent.

Results and Discussion

The starting bis(carbodiimide) **6** was prepared by a two-step sequence: (a) aza-Wittig reaction of 1,2-bis-(triphenylphosphoranylideneamino)ethane with carbon disulfide to give the corresponding bis(isothiocyanate) in 93% yield and (b) aza-Wittig reaction of the bis(isothiocyanate) with the above-mentioned bis(iminophosphorane) to give **6** in 97% yield.⁹ The bis(carbodiimide) **7** was prepared in 71% yield directly from bis[2,2'-(triphenylphosphoranylideneamino)benzyl] ether by reaction with the system Boc₂O/DMAP.⁹

Bis(carbodiimide) **6** reacted with ammonia and primary and secondary alkylamines at room temperature to give the macrocyclic bis(guanidines) **8**, which were isolated as crystalline solids in yields ranging from 80 to 98%. The presence of an oxygen atom into the tether connecting the two aromatic rings did not affect the behavior observed in the bis(carbodiimide) **6**. Thus, bis(carbodiimide) **7** reacted with ammonia and primary alkylamines to give **9a**-**c** in excellent yields (Scheme 1).

⁽¹⁾ Riordan, J. F. Mol. Cell Biochem. 1979, 26, 71.

⁽²⁾ For a recent review, see: Schmidtchen, F. P.; Berger, M. *Chem. Rev.* **1997**, *97*, 1609.

⁽³⁾ Dietrich, B.; Fyles, T. M.; Lehn, J.-M. Helv. Chim. Acta 1979, 62, 2763.

⁽⁷⁾ Dietrich, B.; Fyles, T. M.; Lehn, J. M.; Pease, L. G.; Fyles, D. L.
J. Chem. Soc. Chem. Commun. 1978, 934.
(8) Lukyanenko, N. G.; Kirichenko, T. I.; Limich, V. V. Synthesis

⁽⁸⁾ Lukyanenko, N. G.; Kirichenko, T. I.; Limich, V. V. Synthesis 1986, 928.

^{(9) (}a) Molina, P.; Alajarín, M.; Sánchez-Andrada, P. *Tetrahedron Lett.* **1993**, *34*, 5155. (b) Molina, P.; Alajarín, M.; Sánchez-Andrada, P.; Elguero, J.; Jimeno, M. L. *J. Org. Chem.* **1994**, *59*, 7306.

In general, ¹H and ¹³C NMR spectra of compounds **8** and **9** showed broad signals which may be probably due to the existence of conformational and/or tautomeric equilibria associated with the molecule at room temperature. This type of behavior has been recently described in related macrocyclic systems.¹⁰

In the room-temperature ¹H NMR spectrum of **9b** in DMSO- d_6 , the twelve methyl protons appeared as a broad singlet at δ 1.22 ppm, whereas the two methine protons and the eight methylene protons revealed as two broad signals centered at δ 3.95 and 4.31 ppm, respectively. The ¹³C NMR spectrum exhibits the requisite number of signals in broad appearance. When the ¹H NMR spectrum was recorded at 363 K, the broad signal at 1.22 ppm appeared clearly as a doublet at δ 1.19 ppm (J = 6.3 Hz) and the signal assigned to the methine protons appeared as a multiplet in the region δ 3.95–3.99 ppm, whereas the signal assigned to the methylene protons remained unchanged.

Bis(carbodiimides) **6** and **7** also reacted with α, ω diamino compounds to give the macrobicycles **10** and **11**, respectively, in yields ranging from 74 to 88% as crystalline solids. High dilution conditions are common for ring closures of this type where multifunctional groups react. Formation of **10** and **11** was accomplished by dropwise addition of a solution of the α, ω -diamino compound in

^{*a*} (a) RR¹NH, CH₂Cl₂, rt.

dichloromethane to a solution of the bis(carbodiimide) in the same solvent at room temperature (Scheme 2).

Positive FAB mass spectrometry was used to show that all the products had the expected molecular formulas. In the ¹H NMR spectrum of **11b** the methylene protons of the propylene bridge appeared as three multiplets at δ 1.45–1.49 (2H), 3.08–3.12 (2H), and 3.34–3.62 (2H) ppm, respectively, whereas the ArCH₂O protons are diastereotopic and appeared as a set of four doublets at δ 3.96 (J = 8.1 Hz), 4.44 (J = 12.7 Hz), 4.70 (J = 8.1 Hz), and 5.23 (J = 12.7 Hz), respectively. The ¹³C NMR spectrum showed two signals for the propylene bridge carbon atoms. These findings suggest that the structure of compound **11b** in solution could be such as the one represented below.

To identify unambiguously the proposed structures, X-ray structure determination of compound **10a** was performed. The final X-ray model of **10a** is shown in Figure 1, drawn with ORTEP.¹¹ Another molecular perspective showing the ring puckering is given in Figure 2. The bond lengths distribution around C7 and C8 indicates a slight electron delocalization but is mainly

^{(10) (}a) Allan, C. B.; Spreer, L. O. *J. Org. Chem.* **1994**, *59*, 7695. (b) Dave, P. R.; Doyle, G.; Axenrod, T.; Yazdekhasti, H.; Ammon, H. L. J. Org. Chem. **1995**, *60*, 6946. (c) Garcia-Fernandez, J. M.; Jimenez-Blanco, J. L.; Ortiz-Mellet, C.; Fuentes, J. J. Chem. Soc. Chem. Commun. **1995**, 57.

⁽¹¹⁾ Johnson, C. K. ORTEP, Report ORNL-3974, Oak Ridge National Laboratory, TN, 1965.

Figure 1. Final X-ray model of 10a showing the atomic numbering used.

consistent with the double bonds C7=N5 and C8=N2. No voids were found in this crystal structure, the total packing coefficient¹² being 0.69.

Eventually, macrocyclic bis(guanidines) **8**, **10**, and **11** were converted in high yields (78–92%) into the corresponding bis(guanidinium) salts **12** and **13** by the action of hydrochloric acid. In general, the ¹H and ¹³C NMR

Figure 2. Molecular perspective showing the ring puckering. Some atom labels are shown for reference.

Scheme 3

spectra of **12** and **13** showed sharp and well-defined signals. As expected, in the ${}^{13}C$ NMR spectra the guanidinium carbon atom (155–159 ppm) appeared at lower field than in compounds **10** and **11** (148–151 ppm) (Scheme 3).

Some preliminary experiments on the anion complexation properties of the bis(guanidinium) salts **12** and **13** have been performed for the carboxylate anion by liquid– liquid single extraction experiments. Sodium *p*-nitrobenzoate was quantitatively extracted from water by a chloroform solution of **12c**. Despite its ionic structure, no trace of **12c** was found in the aqueous layer, and the chloroform extract was composed exclusively of the bis-

⁽¹²⁾ Cano, F. H.; Martinez-Ripoll, M. J. J. Mol. Struct. (THEOCHEM), 1992, 258, 139.

(guanidinium) bis(p-nitrobenzoate) salt, which was isolated as a crystalline solid.

Although some differences in chemical shift were observed in the ¹H NMR (CDCl₃) spectra on going from **8f**·2(p-O₂N-C₆H₄-COOH) to **12c** ($\Delta\delta$ CH₂ = +0.16; $\Delta\delta$ CH₃ = -0.38) and between the triethylammonium *p*-nitrobenzoate and the salt 8f $\cdot 2(p - O_2 N - C_6 H_4 - COOH)$ ($\Delta \delta H_{ortho}$ = -0.19; $\Delta\delta H_{meta} = -0.17$), they are not conclusive to elucidate if a complex of well-defined geometry has been formed, which involves some kind of recognition of the guest by the bis(guanidinium) cation.

In an analogous experiment, 2 equiv of sodium pnitrobenzoate was quantitatively extracted from water by a chloroform solution of the bis(guanidinium) salt 13b. The ¹H NMR (DMSO- d_6) spectra of **11a**·2(p-O₂N-C₆H₄-COOH) revealed significant shifts for most signals of both ions. For instance, in the ¹H NMR spectrum of this complex, two of the NH guanidinium protons appeared included in the multiplet at δ 7.22–7.46 ppm, corresponding to the aromatic protons of the guanidinium ion, whereas the remaining four NH protons appeared as a broad singlet centered at δ 9.22 ppm. In the salt **13b** these protons appeared as three singlets, each integrating as 2H, centered at δ 7.74, 8.85, and 9.54 ppm.

The ArCH₂O protons were diastereotopic in the salt **13b**, appearing as a set of four doublets at δ 4.29 (J =11.3 Hz), 4.40 (J = 11.0 Hz), 4.73 (J = 11.0 Hz), and 4.79 (J = 11.3 Hz). However, in the guanidinium salt **11a**. $2(p-O_2N-C_6H_4-COOH)$, these protons appeared as a complex multiplet centered at δ 4.37–4.83 ppm. The CH₂N protons also appeared as a complex multiplet in the salt $11a \cdot 2(p - O_2 N - C_6 H_4 - COOH)$ at $\delta 3.19 - 3.62$ ppm, whereas in the salt 13b these protons appeared as two multiplets at δ 3.35–3.43 and 4.00–4.09 ppm.

On the other hand, in the ¹H NMR spectra the difference in chemical shifts for the protons of the *p*-nitrobenzoate ion on going from triethylammonium *p*-nitrobenzoate (DMSO-*d*₆) in **11a**·2(*p*-O₂N-C₆H₄-COOH) was $\Delta \delta H_{ortho} = -0.14$, and $\Delta \delta H_{meta} = -0.03$ ppm, whereas when both ¹H NMR spectra were registered in CDCl₃ these differences were notably higher, $\Delta \delta H_{ortho} = -0.46$, and $\Delta \delta H_{meta} = -0.20$ ppm.

Concluding Remarks

In conclusion, we have developed a simple and efficient method for the preparation of a new type of macrocyclic bis(guanidine) of varying ring size and complexity.

Due to the easy access of the starting C, C-bis(iminophosphoranes), the good yields in the formation of the macrocyclic bis(carbodiimides) as well as in the amination step, and the simplicity of the experimental procedure, the investigated reactions provide a method for the preparation of relatively complex and unreported macrocyclic bis(guanidines) not available by those previously reported methods.

Experimental Section

General Methods. General experimental conditions and spectroscopic instrumentation used have been described.¹³

Crystal Structure of 10a. A summary of the crystallographic work is given in Table 1. The X-ray data were

Table 1. Crystal Data for Compound 10a

	Crystal Data
formula	$C_{32}H_{32}N_6$
crystal habit	colorless prisms
crystal size (mm)	0.3 imes 0.2 imes 0.2
symmetry	monoclinic $P2_1/a$
wavelength (Å),	1.5418, 200
$T(\mathbf{K})$	
unit cell deter.	least squares fit from 52 refl ($\theta < 30^{\circ}$)
unit cell dimen	a = 9.022(1) Å, $b = 28.646(3)$ Å,
	$c = 10.012(1)$ Å, $\beta = 91.36(1)^{\circ}$
packing:	2586.8(5), 4
$V(Å^3)$, Z	
$M_{\rm c} D_{\rm c}$ (g cm ⁻³).	500.64, 1.296, 1064
F(000)	
absorption coeff	0.609
(mm^{-1})	0.000
(IIIII)	
	Experimental Data
technique	four-circle diffractometer, SEIFERT
	XRD-3000S
	bisecting geometry, graphite-oriented
	monochromator
	$\omega/2\theta$ scans, scan width (deg) 1.5 + 0.15 tan θ
	detector apertures $1 imes 1^\circ$,
	reference reflections, 2; no decay
no. meas reflct	4065
no. indep reflct	3849
R _{int}	0.010
index ranges	0 < h < 10, 0 < k < 32, -11 < l < 11
θ range	3-60°
	Pofinament Data
mothod	full matrix losst squares on F^2
doto/poromtr	2840/542
hudrogen eteme	Joseted on the difference man and refined
nyurogen atoms	isotronically
readman of fit	1 179
goodness of fit	1.178
OII F ^{**}	
IIII IIIII K IIIIIICES	$R = 0.0544, R_{\rm W} = 0.0774$
$[I \geq Z\sigma(I)]$	D 0.0000 D 0.0010
<i>k</i> indices	$R = 0.0668, R_{\rm W} = 0.0810$
(all data)	0.0004(0)
extinction	0.0024(2)
coefficient ¹⁴	
largest diff	0.20 and -0.20 e A^{-3}
peak and hole	
computing	XRAY76,13 SIR92,10 SHELX9317
programs	
scattering	International Tables for X-ray
factors	Crystallography ¹⁸

collected at 200 K. The structure was solved by direct methods and refined by weighted full-matrix least squares analysis on F^2 . All hydrogen atoms were easily located on the difference map and included in the refinement as isotropic contributors. Slight secondary extinction effects were corrected during the last cycles of refinement.

Bis(guanidines) 8 and 9. General Procedure. To a solution of the appropriate bis(carbodiimide) 6 or 7 (0.34 mmol) in anhydrous dichloromethane (15 mL) was added the corresponding amine (1.02 mmol). The resultant mixture was stirred at room temperature for 15-30 min and then the solvent was removed under reduced pressure, and the solid residue was treated with diethyl ether, filtered, and air-dried to give the corresponding bis(guanidine) 8 or 9, which was recrystallized from the adequate solvent. In the case of

(18) International Tables for X-ray Crystallography, Kynoch Press: Birmingham, 1974; Vol. IV, p 72.

⁽¹³⁾ Molina, P.; Pastor, A.; Vilaplana, M. J. J. Org. Chem. 1996, 61, 8094.

⁽¹⁴⁾ Larson, A. C. Acta Crystallogr. 1967, 23, 664.

⁽¹⁵⁾ Stewart, J. M.; Machin, P. A.; Dickinson, C. W.; Ammon, H. L.; Heck, H.; Flack, H. *The X-ray 80 System*, Technical Report TR-446, Computer Science Center, University of Maryland, College Park, MD, 1976.

⁽¹⁶⁾ Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, G.; Guagliardi, A.; Polidori, G. SIR92, J. Appl. Crystallogr. 1994, 27. 435.

⁽¹⁷⁾ Sheldrick, G. M. SHELX93, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1993.

reaction with ammonia, it was bubbled through a solution of the appropriate bis(carbodiimide) in anhydrous dichoromethane at room temperature for 20–30 min and worked up similarly.

8a: 98% yield; mp 173–175 °C, colorless prisms (chloroform); IR (Nujol) 1644, 1632, 1586, 1567, 1483 cm⁻¹; ¹H NMR (CDCl₃) δ 2.79 (s, 8H), 4.50 (s, 4H), 6.91–7.12 (m, 14H), 7.25 (d, 4H, J = 6.9 Hz); ¹³C NMR (CDCl₃) δ 34.5, 122.6, 123.0, 126.8, 129.5, 136.0, 142.7, 150.9; mass spectrum (relative intensity) 474 (M⁺, 7), 221 (14), 212 (53), 106 (100). Anal. Calcd for C₃₀H₃₀N₆: C, 75.92; H, 6.37; N, 17.71. Found: C, 75.77; H, 6.21: N, 17.82.

8b: 99% yield; mp 288–290 °C, white prisms (dichloromethane); IR (Nujol) 1665, 1487, 1454, 1395, 751 cm⁻¹; ¹H NMR (CDCl₃/CF₃CO₂H) δ 2.84 (s, 6H), 2.94–3.02 (m, 8H), 6.42 (s, br, 1H), 7.15–7.38 (m, 18H), 8.47 (s, br, 1H); ¹³C NMR (CDCl₃ / CF₃CO₂H) δ 28.9, 32.0 (br), 128.0, 128.9, 130.5, 131.0, 138.9 (br), 156.3, one quaternary carbon was not observed; mass spectrum (FAB⁺) (relative intensity) 504 (37), 503 (M⁺ + 1, 100), 502 (19), 176 (56). Anal. Calcd for C₃₂H₃₄N₆: C, 76.45; H, 6.82; N, 16.73. Found: C, 76.28; H, 6.91; N, 16.82.

8c: 89% yield; mp 242–244 °C, colorless prisms (dichloromethane/diethyl ether); IR (Nujol) 1639, 1596, 1515, 1490, 748 cm⁻¹; ¹H NMR (CDCl₃) δ 0.97 (d, 12H, J = 3.4 Hz), 2.82 (s, 8H), 3.41–3.63 (m, 4H), 6.98–7.23 (m, 18H); ¹³C NMR (CDCl₃) δ 23.0, 32.7 (br), 43.5 (br), 123.2 (br), 126.9, 129.3, 136.0, 142.9 (br), 149.3 (br); mass spectrum (relative intensity) 558 (M⁺, 5), 221 (59), 219 (96), 131 (87), 106 (100). Anal. Calcd for C₃₆H₄₂N₆: C, 77.37; H, 7.58; N, 15.05. Found: C, 77.25; H, 7.67; N, 15.10.

8d: 80% yield; mp 185–187 °C, colorless prisms (dimethyl sulfoxide); IR (Nujol) 1639, 1632, 1591, 1523, 1494 cm⁻¹; ¹H NMR (DMSO- d_6) δ 2.67 (s, 8H), 4.25 (s, 4H), 5.44 (s, br, 2H), 6.69–7.18 (m, 28H); ¹³C NMR (DMSO- d_6) δ 31.4, 44.6, 122.5 (br), 123.4 (br), 126.3, 126.3, 127.1, 127.8, 128.7 (br), 135.5 (br), 140.6, 148.7, 157.3; mass spectrum (FAB⁺) (relative intensity) 656 (45), 655 (M⁺ + 1, 100), 654 (63), 653 (22). Anal. Calcd for C₄₄H₄₂N₆: C, 80.69; H, 6.47; N, 12.84. Found: C, 80.74; H, 6.36; N, 12.99.

8e: 90% yield; mp 193–195 °C, colorless prisms (chloroform); IR (Nujol) 1632, 1589, 1519, 1485, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 1.31 (d, 6H, J = 6.5 Hz), 2.33–2.70 (m, 8H), 3.90–3.96 (m, 2H), 5.06 (s, br, 2H), 6.73–7.25 (m, 28H); ¹³C NMR (CDCl₃) δ 21.7, 31.6, 49.5 (br), 123.2 (br), 126.0, 126.2, 126.6, 126.9, 127.9, 128.8 (br), 136.2, 142.6, 144.8, 147.6 (br); mass spectrum (FAB⁺) (relative intensity) 685 (52), 684 (100), 683 (M⁺ + 1, 54), 219 (34). Anal. Calcd for C₄₆H₄₆N₆: C, 80.90; H, 6.79; N, 12.31. Found: C, 81.03; H, 6.54; N, 12.44.

8f: 88% yield; mp 180–182 °C, colorless prisms (benzene/ *n*-hexane); IR (Nujol) 1618, 1586, 1570, 1491, 1459 cm⁻¹; ¹H NMR (CDCl₃) δ 2.17 (s, 4.6H), 2.69–2.89 (m, 15.4H), 6.75– 7.21 (m, 18H); ¹³C NMR (CDCl₃) δ 32.5 (br), 33.7 (br), 38.4 (br), 39.21 (br), 121.8 (br), 122.3 (br), 126.9 (br), 129.2 (br), 135.5 (br), 144.2 (br), 155.9 (br); mass spectrum (relative intensity) 530 (M⁺, 9), 266 (23), 221 (43), 46 (100). Anal. Calcd for C₃₄H₃₈N₆: C, 76.94; H, 7.22; N, 15.84. Found: C, 77.03; H, 7.18; N, 15.78.

9a: 90% yield; mp 310–312 °C, colorless prisms (dichloromethane/diethyl ether); IR (Nujol) 3362, 1666, 1639, 1591, 1570 cm⁻¹; ¹H NMR (CDCl₃) δ 4.55 (s, 8H), 4.77 (s, br, 4H), 6.91–7.30 (m, 18H); ¹³C NMR (CDCl₃) δ 72.0, 122.4, 128.5 (br), 129.7, 131.1, 144.3 (br), 148.9, one quaternary carbon was not observed; mass spectrum (FAB⁺) (relative intensity) 508 (38), 507 (M⁺ + 1, 100), 307 (36), 176 (28). Anal. Calcd for C₃₀H₃₀N₆O₂: C, 71.11; H, 5.97; N, 16.60. Found: C, 70.98; H, 5.85; N, 16.73.

9b: 90% yield; mp 234–237 °C, colorless prisms (dichloromethane/diethyl ether); IR (Nujol) 3384, 1644, 1597, 1515, 1484 cm⁻¹; ¹H NMR (CDCl₃) δ 1.16–3.38 (m, 12H), 3.38–3.46 (m, 2H), 3.81–4.82 (m, 10H), 6.42–7.26 (m, 18H); (DMSO-*d*₆) δ (r.t.): 1.20–1.24 (m, 12H), 3.95 (m, 2H), 4.31 (s, br, 8H), 5.48 (s, br, 1H), 6.09 (s, br, 1H), 6.54–7.24 (m, 18H); (DMSO-*d*₆) δ (90 °C): 1.19 (d, 12H, *J* = 6.3 Hz), 3.95–3.99 (m, 2H), 4.22 (s, br, 8H), 5.20 (s, br, 2H), 6.52–7.16 (m, 18H); ¹³C NMR (DMSO-*d*₆) δ 22.4, 42.4, 65.5 (br), 69.4 (br), 121.6 (br), 128.2 (br), 129.1 (br), 131.2 (br), 141.9 (br), 147.0, 145.9 (br); HRMS calcd for

 $C_{36}H_{42}N_6O_2\ (M^+):$ 590.336925. Found: 590.335570. Anal. Calcd for $C_{36}H_{42}N_6O_2:$ C, 73.18; H, 7.17; N, 14.23. Found: C, 73.43; H, 7.03; N, 14.10.

9c: 87% yield; mp 98–100 °C, white prisms (diethyl ether/ *n*-hexane); IR (Nujol) 1647, 1604, 1509, 741, 701 cm⁻¹; ^IH NMR (CDCl₃) δ 1.35–1.60 (m, 6H), 3.37–5.23 (m, 12H), 6.34–7.52 (m, 28H); ¹³C NMR (CDCl₃) δ 22.7, 50.4 (br), 67.7, 69.3, 69.6, 71.7, 117.4, 120.5, 122.1, 122.9, 126.9, 128.3, 129.1, 129.9, 130.3, 131.9, 132.0, 132.1, 132.2, 140.4, 141.9, 144.3, 145.0, 145.6, 146.3, 147.6, 149.2; mass spectrum (FAB⁺) (relative intensity) 716 (51), 715 (M⁺ + 1, 100), 714 (14), 358 (10). Anal. Calcd for C₄₆H₄₆N₆O₂: C, 77.28; H, 6.49; N, 11.76. Found: C, 77.47; H, 6.35; N, 11.87.

Bis(guanidines) 10 and 11. General Procedure. To a stirred solution of the appropriate bis(carbodiimide) **6** or **7** (0.45 mmol) in anhydrous dichloromethane (75 mL) was added dropwise a solution of the α, ω -diamino compound (0.45 mmol) in the same solvent (30 mL) at room temperature under nitrogen for 7 h. After the addition, the solvent was removed under reduced pressure and the crude product was either chromatographed on a silica gel column or recrystallized from the appropriate solvent to give **10** or **11**.

10a: (silica gel, ethanol/ammonium hydroxide 30:1); 88% yield; mp 319–321 °C, colorless prisms (dimethyl sulfoxide); IR (Nujol) 1633, 1596, 1575, 1527, 1485 cm⁻¹; ¹H NMR (CDCl₃) δ 2.42–3.21 (m, 10H), 3.94–4.22 (m, 4H), 5.42 (s, br, 2H), 6.97–7.30 (m, 16H); ¹³C NMR (CDCl₃) δ 32.4 (br), 40.9 (br), 122.2 (br), 123.3 (br), 127.2, 128.6 (br), 135.6 (br), 136.1 (br), 139.7 (br), 147.8 (br), 150.1; mass spectrum (relative intensity) 500 (M⁺, 3), 220 (59), 219 (100), 174 (58). Anal. Calcd for C₃₂H₃₂N₆: C, 76.77; H, 6.44; N, 16.79. Found: C, 76.58; H, 6.54; N, 16.87.

10b: (silica gel, ethanol/ammonium hydroxide 40:1); 80% yield; mp 292–294 °C, colorless prisms; IR (Nujol) 1650, 1634, 1591, 1575, 1542 cm⁻¹; ¹H NMR (CDCl₃) δ 1.30–1.65 (m, br, 2H), 2.42–3.60 (m, br, 12H), 5.20 (s, br, 2H), 6.70–7.40 (m, 18H); ¹³C NMR (CDCl₃) δ 27.3 (br), 31.7 (br), 41.2 (br), 121.4 (br), 123.5 (br), 126.1, 129.3, 135.9 (br), 138.4 (br), 148.4 (br); mass spectrum (FAB⁺) (relative intensity) 516 (50), 515 (M⁺ + 1, 100), 514 (22), 307 (22). Anal. Calcd for C₃₃H₃₄N₆: C, 77.01; H, 6.66; N, 16.33. Found: C, 77.10; H, 6.72; N, 16.17.

10c: (silica gel, ethanol/ammonium hydroxide 60:1); 74% yield; mp 253–255 °C (dec), white prisms; IR (Nujol) 1639, 1590, 1514, 1481, 1455 cm⁻¹; ¹H NMR (CDCl₃) δ 2.27–2.46 (m, br, 2H), 2.60–2.78 (m, br, 4H), 3.06–3.58 (m, br, 14H), 4.28–4.67 (m, br, 2H), 6.83–7.40 (m, 18H); ¹³C NMR (CDCl₃) δ 31.0 (br), 41.3 (br), 69.8, 70.2, 123.3 (br), 123.9 (br), 127.0 (br), 129.6 (br), 136.1, 148.6 (br), one quaternary carbon was not observed; mass spectrum (FAB⁺) (relative intensity) 590 (50), 589 (M⁺ + 1, 100), 588 (39), 587 (16). Anal. Calcd for C₃₆H₄₀N₆O₂: C, 73.44; H, 6.85; N, 14.27. Found: C, 73.58; H, 6.80; N, 14.11.

11a: 94% yield; mp 296–298 °C, colorless prisms (acetonitrile); IR (Nujol) 1660, 1651, 1644, 1597, 1506 cm⁻¹; ¹H NMR (CDCl₃) δ 2.94–3.08 (m, 2H), 3.27–3.42 (m, 2H), 4.24 (d, 2H, J = 8.6 Hz + 2 NH), 4.52 (d, 2H, J = 10.2 Hz), 4.79 (d, 2H, J = 8.6 Hz), 4.80 (d, 2H, J = 10.2 Hz), 6.87 (d, 2H, J = 7.3 Hz), 6.96–7.04 (m, 4H), 7.24–7.37 (m, 8H), 7.49 (s, 2H), 7.77 (d, 2H, J = 7.6 Hz); ¹³C NMR (CDCl₃) δ 46.2, 71.9, 73.3, 122.7, 123.0, 123.4, 127.8, 127.9, 129.3, 130.3, 130.8, 131.0, 132.0, 140.3, 149.7, 151.0; mass spectrum (FAB⁺) (relative intensity) 534 (55), 533 (M⁺ + 1, 100), 532 (12), 280 (11). Anal. Calcd for C₃₂H₃₂N₆O₂: C, 72.16; H, 6.06; N, 15.78. Found: C, 72.55; H, 6.21; N, 15.32.

11b: (silica gel, ethanol/ammonium hydroxide 40:1), 77% yield; mp 246–248 °C, colorless prisms (acetonitrile); IR (Nujol) 3410, 1649, 1633, 1591, 1543 cm⁻¹; ¹H NMR (CDCl₃) δ 1.45–1.49 (m, 2H), 3.08–3.12 (m, 2H), 3.34–3.62 (m, 4H), 3.96 (d, 2H, J = 8.1 Hz), 4.44 (d, 2H, J = 12.7 Hz), 4.79 (d, 2H, J = 8.1 Hz), 5.13 (d, 2H, J = 12.7 Hz), 6.75–7.01 (m, 10H), 7.19–7.41 (m, 6H), 8.01 (d, 2H, J = 7.3 Hz); ¹³C NMR (CDCl₃) δ 28.4, 37.8, 70.5, 73.1, 121.0, 121.4, 122.5, 123.0, 125.2, 129.3, 129.9, 130.1, 131.2, 132.5, 139.6, 147.7, 149.1; mass spectrum (FAB⁺) (relative intensity) 548 (M⁺, 43), 547 (M⁺ + 1, 100),

329 (11), 307 (22). Anal. Calcd for $C_{33}H_{34}N_6O_2$: C, 72.50; H, 6.27; N, 15.37. Found: C, 72.67; H, 6.15; N, 15.48.

11c: (silica gel, ethanol/ammonium hydroxide 60:1), 77% yield; mp 320–324 °C, colorless prisms (chloroform); IR (Nujol) 1639, 1595, 1520, 1493, 1336 cm⁻¹; ¹H NMR (CDCl₃) δ 3.02–3.90 (m, 12H), 4.10–4.77 (m, 10H), 6.72–7.39 (m, 18H); ¹³C NMR (CDCl₃) δ 41.8, 69.5, 70.2, 70.4, 123.3 (br), 128.8, 129.3, 132.0 (br), 148.4, one methine carbon and one quaternary carbon were not observed; mass spectrum (FAB⁺) (relative intensity) 623 (9) 622 (42), 621 (M⁺ + 1, 100), 620 (8). Anal. Calcd for C₃₆H₄₀N₆O₄: C, 69.66; H, 6.50; N, 13.54. Found: C, 69.79; H, 6.41; N, 13.31.

Macrocyclic Bis(guanidinium) Salts 12 and 13. Method A. A stream of dry HCl was bubbled through a solution of the appropriate bis(guanidine) **8** or **11** (0.2 mmol) in anhydrous dichloromethane (30 mL) at room temperature for 15 min. After cooling at 0 °C the precipitated solid was separated by filtration, washed with diethyl ether, and air-dried to give **12** or **13**, which was recrystallized fron the adequate solvent.

12a: 78% yield; mp >350 °C, colorless prisms (dichloromethane/diethyl ether); IR (Nujol) 3329, 3138, 1654, 1639, 1580 cm⁻¹; ¹H NMR (CDCl₃) δ 2.95 (s, 8H), 7.13–7.49 (m, 20H), 9.91 (s, 4H); ¹³C NMR (CDCl₃) δ 31.1, 127.5, 127.9, 128.0, 130.4, 133.2, 138.4, 155.6; mass spectrum (FAB⁺) (relative intensity) 476 (34), 475 (M⁺ + 1 – 2HCl, 86), 474 (13), 307 (26). Anal. Calcd for C₃₀H₃₂Cl₂N₆: C, 65.81; H, 5.89; N, 15.35. Found: C, 65.53; H, 5.72; N, 15.02.

12c: 80% yield; mp >350 °C, colorless prisms (dichloromethane/diethyl ether); IR (Nujol) 3373, 3171, 1634, 1597, 1575 cm⁻¹; ¹H NMR (CDCl₃) δ 2.74 (s, 8H), 3.09 (s, 12H), 7.12–7.16 (m, 18H), 10.47 (s, br, 2H); ¹³C NMR (CDCl₃) δ 31.9 (br), 40.7, 127.5 (br), 127.3, 127.6, 129.8 (br), 134.8, 135.3, 156.4; mass spectrum (relative intensity) 531 (30), 530 (M⁺ – 2HCl, 77), 487 (52), 486 (100). Anal. Calcd for C₃₄H₄₀Cl₂N₆: C, 67.65; H, 6.68; N, 13.92. Found: C, 67.44; H, 6.72; N, 14.05.

13c: 81% yield; mp 272–274 °C, colorless prisms (dichloromethane); IR (Nujol) 1655, 1634, 1586, 1533, 1507 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.67–1.82 (m, 2H), 2.89–3.15 (m, 4H), 4.47–4.82 (m, 8H), 7.34–7.55 (m, 18H), 9.80 (s, 4H); ¹³C NMR (DMSO- d_6) δ 25.9, 39.9, 69.3, 127.9, 128.1, 129.5, 131.2, 134.2, 134.8, 154.7; mass spectrum (FAB⁺) (relative intensity) 549 (9), 548 (40), 547 (M⁺ + 1 – 2HCl, 100), 307 (11). Anal. Calcd for C₃₃H₃₆Cl₂N₆O₂: C, 63.97; H, 5.86; N, 13.56. Found: C, 64.13; H, 5.90; N, 13.74.

Method B. To a solution of the corresponding bis(guanidine) **8**, **10**, or **11** (0.015 mmol) in dry chloroform (19 mL) was added concentrated hydrochloric acid (1 mL). The mixture was stirred at room temperature for 1 h and the precipitated solid was collected by filtration, washed with diethyl ether, and recrystallized from the adequate solvent.

12b: 91% yield; mp 338–340 °C, colorless prisms (dichloromethane); IR (Nujol) 3207, 3110, 1650, 1630, 1603 cm⁻¹; ¹H NMR (CD₃OD) δ 2.84 (s, br) + 3.22 (s, br) (=14H), 7.32–7.58 (m, 16H); ¹³C NMR (CD₃OD) δ 29.9 (br), 34.58 (br), 129.5, 130.1, 130.9, 132.4 (br), 134.5 (br), 141.2 (br), 157.9 (br); mass spectrum (FAB⁺) (relative intensity) 503 (42), 502 (M⁺ + 1 – 2HCl, 100), 501 (11), 221 (11). Anal. Calcd for C₃₂H₃₆N₆Cl₂: C, 66.78; H, 6.30; N, 14.60. Found: C, 66.91; H, 6.18; N, 14.41.

13a: 89% yield; mp 303–304 °C, colorless prisms (methanol); IR (Nujol) 1635, 1625, 1614, 1594, 1574 cm⁻¹; ¹H NMR (DMSO- d_6) δ 2.67–3.42 (m, 10H), 4.29–4.40 (m, 2H), 6.48 (s, br, 1H), 7.32–7.66 (m, 18H), 8.78 (s, 2H), 10.47 (s, 1H); ¹³C NMR (DMSO- d_6) δ 27.6, 30.6, 31.1, 34.4, 38.5, 41.2, 127.4, 127.8, 128.3, 128.7, 128.9, 129.4, 129.6, 130.0, 130.5, 130.9,

131.7, 131.7, 133.5, 139.3, 139.4, 140.2, 140.9, 154.2, 154.8; mass spectrum (FAB⁺) (relative intensity) 502 (38), 501 (M⁺ + 1 - 2HCl, 100), 500 (11), 329 (8). Anal. Calcd for $C_{32}H_{34}$ - Cl_2N_6 : C, 67.01; H, 5.97; N, 14.65. Found: C, 67.17; H, 5.79; N, 14.39.

13b: 92% yield; mp 276–278 °C, colorless prisms (dichloromethane); IR (Nujol) 1649, 1627, 1612, 1581, 1453 cm⁻¹; ¹H NMR (DMSO- d_0) δ 3.35–3.43 (m, 2H), 4.00–4.09 (m, 2H), 4.29 (d, 2H, J = 11.3 Hz), 4.40 (d, 2H, J = 11.0 Hz), 4.73 (d, 2H, J = 11.0 Hz), 4.79 (d, 2H, J = 11.3 Hz), 7.36–7.54 (m, 16H), 7.72–7.77 (m, br, 2H), 8.85 (s, 2H), 9.54 (s, 2H); ¹³C NMR (DMSO- d_0) δ 41.2 (br), 68.9, 69.1, 128.1, 128.2, 128.4, 129.0, 129.1, 129.9, 130.0, 132.5, 133.0, 134.3, 134.8, 136.7, 154.9; mass spectrum (FAB⁺) (relative intensity) 535 (11), 534 (50), 533 (M⁺ + 1 – 2HCl, 100), 280 (97). Anal. Calcd for C₃₂H₃₄-Cl₂N₆O₂: C, 63.47; H, 5.66; N, 13.88. Found: C, 63.29; H, 5.74; N, 13.59.

Extraction Experiments. To a solution of the bis(guanidine) salt **12c** or **13b** (0.051 mmol) in chloroform (1 mL) was added a solution of sodium *p*-nitrobenzoate (0.103 mmol) in water (1 mL). The resultant mixture was well-stirred at room temperature for 8 h and then the organic layer was separated and the aqueous one was well-washed with chloroform. The combined organic layers were dried over anhydrous MgSO₄, and the solvent was removed under reduced pressure to give the corresponding bis(guanidinium) salt **8f**·2(*p*-O₂N-C₆H₄-COOH) or **11a**·2(*p*-O₂N-C₆H₄-COOH).

8f·2(p-O₂N-C₆H₄-COOH): 95% yield; mp 169–171 °C, colorless prisms (dimethyl sulfoxide); IR (Nujol) 1646, 1632, 1601, 1540, 1515, 1340 cm⁻¹; ¹H NMR (DMSO- d_6) δ 2.74 (s, 12H), 2.94 (s, 8H), 7.13–7.38 (m, 20H), 7.99 (d, 4H, J = 8.7 Hz), 8.16 (d, 4H, J = 8.7 Hz); (CDCl₃) δ : 2.71 (s, 12H), 2.90 (s, 8H), 7.04–7.27 (m, 20H), 8.02 (d, 4H, J = 8.4 Hz), 8.10 (d, 4H, J = 8.4 Hz); ¹³C NMR (DMSO- d_6) δ 31.3, 39.1, 122.9, 123.7, 125.1, 127.0, 129.8, 130.1, 135.3, 138.8, 142.3, 148.6, 154.8, 167.6; (CDCl₃) δ : 31.6, 40.0, 123.1, 125.4 (br), 126.9 (br), 127.9, 130.4, 131.3, 135.7 (br), 136.2, 142.6, 149.2, 158.1, 170.9; mass spectrum (relative intensity) 532 (2), 531 (60), 530 (29), 487 (32), 486 (100). Anal. Calcd for C₄₈H₄₈N₈O₈: C, 66.64; H, 5.60; N, 12.96. Found: C, 67.01; H, 5.58; N, 12.69.

11a·2(p-O₂N-C₆H₄-COOH): 92% yield; ¹H NMR (DMSOd₆) δ 3.19-3.62 (m, 4H), 4.37-4.83 (m, 8H), 7.22-7.46 (m, 18H), 7.97 (d, 4H, J = 8.8 Hz), 8.20 (d, 4H, J = 8.8 Hz), 9.22 (s, br, 4H); ¹³C NMR (DMSO-d₆) δ 41.9, 69.4, 123.1, 126.6, 130.3, 131.7, 134.4, 137.6, 142.5, 148.7, 153.7, 167.3.

Acknowledgment. We gratefully acknowledge the financial support of the Dirección General de Investigación Científica y Técnica (project number PB95-1019). One of us (P.S.A.) also thanks to the Consejería de Educación de la Comunidad Autónoma de la Región de Murcia for a fellowship.

Supporting Information Available: Summary of crystal data and structure refinement, atomic coordinates, bond lengths, bond angles, anisotropic displacement parameters, and hydrogen coordinates for compound **10a** (26 pages). This material is contained in libraries on microfiche, inmediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO972107J